SHORT COMMUNICATIONS

An expression for ¢ was derived by Karle & Hauptman
(1956) in rather a complicated form, and the physical meaning
of the ¢ value was discussed by Wilson (1950). This paper
shows that ¢ is equal to the ratio of the number of symmetry-
equivalent positions in a unit cell to the number of point-
group equivalent reflexions without Friedel’s law.

Let the sth equivalent position r; of a given position r be
generated by operating a 3 x 3 rotation matrix R, to r and
then by adding a translation vector t,:

rs=Rr+t,.

We consider a structure composed of many similar isotropic
atoms randomly distributed in an asymmetric unit. The
structure factor can be written in the form:
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where the subscript j runs through the atoms in an asymme-
tric unit, hy=hR; is the sth equivalent index for h (Waser,
1955) and M is the number of equivalent positions in a unit
cell.

First let us assume that the cell is primitive and each com-
ponent of t; is O(mod 1) for all s. The equation (1) then reduces
to the form:
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For a general index h there are M different indices h;...h,,
corresponding to M independent R matrices, and the number
of equivalent reflexions, m, is equal to M. For a certain kind
of special index m may be less than M, and M/m terms in the
square bracket of equation (2) have a common index h,.
In general we obtain

N/M m
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and this expression immediately leads to the mean square
structure factors as

N/M N
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The above result is valid also for a case in which some t,’s
are different from lattice vectors. Even in such a case, ex-
ponential factors exp (2zih . t,) in equation (1) present no new
problems for most kinds of indices, and the relation (3) can
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be obtained from (1) in a similar way as from (2). The
special kinds of indices to be considered are those which are
associated with the space-group absences. As far as non-
vanishing reflexions are concerned, however, relation (3) is
valid because for these reflexions we always have, by
selecting a proper origin of the unit cell,

exp (2mih. t)=1. 4

This can be seen, for example, by considering a screw axis p,
along the b axis. The index h we are concerned with is 0kO
with k=pn. Since the relevant t; has the form (t,, ngq/p, t3),
relation (4) is obviously satisfied. A similar situation can also
be found for glide planes. A strict proof of relation (4) for a
non-vanishing reflexion will be given elsewhere (Iwasaki,
1977).

If the cell is non-primitive, the same index h, always
appears L times in the square bracket of (1). Here L is the
multiplicity of the compound lattice: 2 for a body or base-
centred cell, 3 for a hexagonal-rhombohedral and 4 for a
face-centred. A similar calculation leads again to the same
result as (3) for a non-vanishing reflexion, provided that N
is the number of atoms in the compound unit cell and M is
the number of equivalent positions in the same unit cell.

Therefore, we always have

&(h)=M/m(h), )

i.e. the quantity ¢ for a given index h is equal to the ratio of
the number of space-group equivalent positions in the unit
cell to the number of point-group equivalent reflexions for
that reflexion. It must be noted that m is not the number of
Laue-group equivalent reflexions which is known as the
multiplicity of a plane in powder diffractometry: reflexions
hkl and hkl are not equivalent for non-centrosymmetric
structures.

The ¢ values based on the table of equivalent reflexions
(Iwasaki, 1971) are listed in Table 1.
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Dispersion corrections for X-ray atomic scattering factors. By M. J. Coorer, Materials Physics Division, AERE

Harwell, Oxfordshire, OX11 ORA, England

(Received 21 April 1976; accepted 31 August 1976)

Recently tabulated values of dispersion corrections for X-ray atomic scattering factors are misleading since they imply
an unrealistically high reliability and do not take into account their variation with sin §/4, which can in general be quite

significant.

In a recent paper Cromer (1976) has given the results of new
calculations for the values of the dispersion corrections Af’
and Af" for Co Ka, radiation which were made in response
to numerous requests. Previous values for the dispersion

corrections for Co Ko radiation were in fact published
(Cooper, 1963) as a function of both atomic number and
sin /4. Comparison of these two sets of values shows quite
large differences for some elements, but although the new
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values are clearly more reliable it is doubtful if their accuracy
is in general as good as is implied by their tabulation to two
decimal places without further indication of their reliability,
particularly for values close to absorption edges.

Dispersion corrections for other characteristic X-radia-
tions have been calculated by Cromer & Liberman (1970)
and these have also been tabulated in International Tables
for X-ray Crystallography (1974). Although, as stated therein,
it is difficult to assess the accuracy of these corrections, values
have been given to three decimal places which must cer-
tainly imply a quite unrealistic accuracy. No variation with ¢
is given since it is stated that in general this variation is
probably less than the uncertainty in the calculated values.
However, reference to previously tabulated values (e.g.
International Tables for X-ray Crystallography, 1962; Cooper,
1963) and to recent results given by Hazell (1975) shows that
in general the values of Af’ and Af" vary by at least 5 to 10%
over the possible range of sin /2 and in many cases by
several times this factor. Since X-ray atomic scattering fac-
tors decrease so rapidly with sin §/4 this change in the
dispersion corrections may become quite important.

The tabulation of dispersion corrections to two or three
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decimal places, without indication of either their reliability
or their variation with sin /4, is therefore misleading for two
reasons. It implies that the tabulated values have an un-
realistic accuracy and that their dependence on sin 8/1 is
negligible. However, it is suggested that, although the values
may be unreliable, their variation with sin 6/4 is nevertheless
a systematic effect which is in many cases sufficiently signi-
ficant to merit being taken into account.
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Could acetic acid crystallize as dimers? By J. L. Derissen and P. H. SMiT, Department of Chemistry, Structural
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(Received 1 June 1976; accepted 9 July 1976)

It is shown that hypothetical acetic acid crystal structures can be constructed which are built from dimers and which
have a lattice energy equivalent to that of the experimental chain structure. The lattice energy was calculated by the
atom-atom potential method with a modified Lippincott-Schroeder potential for the hydrogen bonds.

As far as is known, monocarboxylic acids in the gaseous state
occur as monomers or as hydrogen-bonded cyclic dimers, the
degree of association depending on the temperature and
vapour pressure. These dimers have also been observed for
most monocarboxylic acids in the crystalline state. But there
are a few exceptions: formic and acetic acid form hydrogen-
bonded chains (Nahringbauer, 1970), and in one of its modi-
fications chloroacetic acid is found to be tetrameric (Kanters
& Roelofsen, 1976). These exceptions require an explanation,
and we wondered whether a molecular-packing analysis
might shed some light on this problem.

In principle therefore, we have to study the free energy as a
function of the crystal structure. The structure corresponding
to the minimal free energy at a given temperature is the stable
one. But, as Kitaigorodsky (1970) argued, one may confine
oneself to the calculation of minima in the lattice energy. In
that case all the structures belonging to the lowest minima
with comparable depths have to be considered. The stable
structure will be governed by the delicate balance of lattice-
energy and entropy terms yielding the minimal free energy.

But even such a lattice-energy analysis may be a hopeless
task, as one has to look at all possible space groups and cell
dimensions for each structure proposed.

Yet, acetic acid seemed to be suited for tractable calcula-
tions. Its crystal structure has been accurately determined
(Nahringbauer, 1970), and an expected space group and a set
of cell parameters for a hypothetical ¢rystal of dimers could
be derived by assuming a structural analogy with fluoro-

acetic acid (Kanters & Kroon, 1972) and with propionic acid
(Strieter, Templeton, Scheuerman & Sass, 1962), which have
the usual dimer structures (Table 1). The molecular structure
of the centrosymmetric crystalline acetic acid dimer was
assumed from analogies between the crystal structures of
B-oxalic acid (Derissen & Smit, 1974) and acetic acid, and
is given in Table 2.

We then performed a lattice-energy analysis for hypo-
thetical acetic acid dimer crystal structures with two centro-
symmetric dimers per cell in P2;/c and with the cell dimen-
sions of Table 1. For this purpose 2275 independent struc-
tures were generated by rotation of the dimer in steps of 15°
around three perpendicular axes through the centre of

Table 1. Space group and cell constants of acetic acid dimer
crystal from analogy with fluoroacetic acid and with propionic

acid
Propionic  Fluoro- Acetic Acetic
acid acetic acid acid dimer acid chains

Space group P2,/c P2,/c P2,/c Pna2,
V4 4 4 4 4
d (icm’ 3) 122 1-60 1-27 1266
a(A) 404 4-30 41 13-32
b(A) 9:06 7-55 7-7 408
c(A) 11-00 998 10-0 577
B(°) 91 852 90



